OMED 2017
Challenging Cases In Thyroid Cytopathology

Alan J. Shienbaum, DO, FCAP, FASCP
Professor and Acting Chair
Department of Pathology
Rowan University School of Osteopathic Medicine

Alan J. Shienbaum, DO

No Disclosures To Report

Learning Objectives

• To understand and apply the Bethesda System diagnostic categories utilized in these cases
• To be familiar with the clinical implications of each of the diagnostic categories
• To know the various molecular abnormalities associated with each lesion discussed
Case #1: 65 y/o Male with Right Thyroid Nodule - Diff Quik

Case #1: 65 y/o Male with Right Thyroid Nodule - Diff Quik

Case #1: 65 y/o Male with Right Thyroid Nodule - Pap Stain
Case #1: 65 y/o Male with Right Thyroid Nodule - Pap Stain

Case #1: 65 y/o Male with Right Thyroid Nodule - Pap Stain

Case #1

- Cytopathologic Diagnosis:
 - Atypia of Undetermined Significance
- Reflex Molecular Testing:
 - ThyroSeq v 2: NRAS Mutation Identified
- Follow-up:
 - Right Thyroid Lobectomy
Genetic Alterations Associated with Papillary Thyroid Carcinoma

- 75% of Papillary Thyroid Carcinomas show mutations as follows:
 - 45% - BRAF
 - 15% - RET/PTC
 - 15% - RAS (most often associated with FVPTC and NIFTP)

Genetic Alterations Associated with Follicular Carcinoma

- 70% of Follicular Carcinomas show mutations as follows:
 - 40% - RAS
 - 30% - PAX8/PPARg
 - Rare - BRAF/K601E

Case #1
Right Thyroid Lobectomy
Case #1
Right Thyroid Lobectomy

Case #1
Right Thyroid Lobectomy

Case #1
Right Thyroid Lobectomy
Case #1
Right Thyroid Lobectomy

NON-INVASIVE FOLLICULAR THYROID NEOPLASM WITH PAPILLARY-LIKE NUCLEAR FEATURES (NIFTP)

• Formerly referred to as encapsulated, non-invasive follicular variant of papillary thyroid carcinoma
 • These lesions tend to show indolent biologic behavior
 • These lesions are genetically distinct from Classic PTC
 • Thus, the name of this entity has been changed to better reflect its indolent behavior

NIFTP

Historical Context

• A group of experts were assembled to formally assess the tumor previously known as “noninvasive encapsulated follicular variant of papillary thyroid carcinoma (FVPTC)” to develop diagnostic criteria and study prognosis
 • Based on the group’s consensus findings, the new term “noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP)” was announced at the meeting of the Endocrine Pathology Society in March 2015
 • This terminology is included in the new World Health Organization (WHO) classification system for endocrine tumors

NON-INVASIVE FOLLICULAR THYROID NEOPLASM WITH PAPILLARY-LIKE NUCLEAR FEATURES (NIFTP)

- This tumor shows a very high association with other follicular-pattern tumors, with 'RAS mutations the most commonly identified.
- However, PPARγ and BRAF K601E mutations may be seen on occasion.
- BRAF V600E mutations and RET gene fusions that are commonly seen in classical type of papillary carcinoma are not seen in this tumor.

NIFTP Impact on Cytopathology

- The introduction of the NIFTP nomenclature has posed a potential problem for cytopathologists
- Usually, the first specimens obtained from thyroid nodules are FNAs
- Differentiating features of NIFTP from those of PTC can be challenging
- Many worry that making the diagnosis of PTC on FNA can result in a false-positive diagnosis in the case of NIFTP

NIFTP
Impact on Cytopathology

- On FNA specimens with nuclear features of PTC and/or follicular architecture, NIFTP is now in the differential diagnosis
- The evaluation of NIFTP lesions on FNA is difficult
- 29% false-positive rate and 9–58% true predictive value on preoperative assessment of follicular variant tumors

NIFTP – Exclusionary Criteria

- Any capsular or vascular invasion
- True papillary structures comprising greater than 1% of tumor volume
- Psammoma bodies
- Infiltrative border
- Tumor necrosis (not associated with FNA)
- Increased mitoses (defined as at least 3 per 10 HPF)
- Presence of any other papillary thyroid carcinoma variant (e.g., tall cell, columnar cell, cribriform-morular, diffuse sclerosing, etc.) or an oncocytic lesion

Case #2. 46 y/o Female Left Thyroid Nodule Diff Quik
Case #2 – Diff Quik

Case #2 – Diff Quik

Case #2 – Pap Stain
Case #2
Thyroidectomy

Case #2 Left Thyroid
Lymph Node

Case #2
Left Thyroid - Synaptophysin
Case #2 Left Iliac Bone FNA
Pap Stain

Case #2 Left Iliac Bone FNA
Cell Block

Case #2 Left Iliac Bone FNA
Synaptophysin
Medullary Thyroid Carcinoma

- Neuroendocrine tumor derived from C cells (formerly called parafollicular cells) of ultimobranchial body of neural crest, which secrete calcitonin
- Represents 5 - 10% of thyroid carcinomas

- Sporadic (nonhereditary)
 - 75 - 80% of cases
 - Age 40 - 60 years
 - Solitary
 - Often associated with paraneoplastic syndromes (diarrhea from vasoactive intestinal peptide (VIP), Cushing's syndrome), dysphagia and hoarseness from tumor bulk

Marini F, et.al. Multiple Endocrine Neoplasia Type 2. Orphanet J Rare Dis 2006;1:45
Medullary Thyroid Carcinoma

- Hereditary (familial)
 - 20 - 25% of cases
 - Seen in younger patients (mean age 35 years)
 - Associated with MEN 2A and 2B syndromes
 - MEN 2A: MTC, pheochromocytoma and parathyroid hyperplasia
 - MEN 2B: MTC, pheochromocytoma, mucosal and alimentary tract neuromas and marfanoid habitus
 - Can occur without the presence of other endocrinopathies (familial non-MEN MTC)

Marini F, et al. Multiple Endocrine Neoplasia Type 2. Orphanet J Rare Dis 2006;1:45.

- Associated with germ line mutations in RET proto-oncogene, familial medullary thyroid carcinoma syndrome, von Hippel-Lindau disease or neurofibromatosis
- Usually bilateral, multicentric with C-cell hyperplasia
- Usually discovered by screening test for serum calcitonin or peripheral blood RET oncogene mutational analysis

Hereditary Medullary Thyroid Carcinoma

Marini F, et al. Multiple Endocrine Neoplasia Type 2. Orphanet J Rare Dis 2006;1:45.

Medullary Thyroid Carcinoma

- 5 year survival: 86% 1
- Poor Prognostic Factors:
 - Older age, cervical nodal metastases, male, sporadic forms, high mitotic activity, small cell type; somatic RET mutation 2
- Favorable Prognostic Factors:
 - Young age, female, familial forms, microcarcinoma

Case #3: 28 y/o Female Right Thyroid FNA
Diff Quik Stain
Case #3
Cell Block

Case #3
TTF-1 Stain

Case #3
Thyroglobulin Stain
Case #3

- Cytopathologic Diagnosis:
 - Atypia of Undetermined Significance
 - Atypical but markedly degenerated cells identified
- Reflex Molecular Testing (ThyroSeq v2):
 - BRAF Mutation Identified
- Follow-up:
 - Thyroidectomy

BRAF V600E

- Most common genetic alteration in PTC (45%)
- Classic papillary carcinoma, tall cell-variant
- Associated with higher tumor stage at presentation, extra-thyroidal extension, lymph node metastasis, higher rate of tumor recurrence and tumor-related mortality
- Highly specific for PTC
- Also associated with Poorly Differentiated Carcinoma and Anaplastic Ca

Case #3: Thyroidectomy
Case #3: Thyroidectomy

Case #3: Thyroidectomy

Case #3: Thyroidectomy - TTF-1 Stain
Case #3:
Thyroidectomy - Thyroglobulin Stain

Infarcted Papillary Thyroid Carcinoma

- A known but rare phenomenon post-FNA
- Post-FNA infarcted thyroid nodules most often occur in Hurthle cell tumors
- Not well described pre-FNA

Infarcted PTC Following FNA

- Mechanisms have been postulated as to how FNA may cause infarction of a thyroid nodule
- The needle may interrupt the microvasculature or may cause traumatic venous thrombosis
- This may be exacerbated by multiple passes with rigorous aspiration, by extraction of large amounts of tissue, and by a large needle size

Case #4: 61 y/o Male with Right Thyroid Nodule – Diff Quik
Case #4

• Cytopathologic Diagnosis:
 • Atypia of Undermined Significance
 • Reflex Molecular Testing (ThyroSeq v2):
 • Strong expression of Parathyroid Hormone (PTH)

Parathyroid Cells in a “Thyroid” FNA

• With increasing use of thyroid FNA, the chances of encountering unsuspected parathyroid lesions are also increasing
 • A parathyroid lesion may present as a thyroid “incidentaloma”
 • Lesions of the thyroid and parathyroid share many cytomorphologic characteristics, making the distinction between the two difficult

Distinguishing Parathyroid from Thyroid on FNA

• IHC Stains (TTF-1, Thyroglobulin, and PTH) can be helpful and can be performed on destained Pap smears or cell block sections with comparable results
 • A conclusive distinction between thyroid and parathyroid cells is not always possible
 • The cytomorphologic distinction between thyroid and parathyroid can be very subtle

Distinguishing Parathyroid from Thyroid on FNA

- A background of colloid-like substance and macrophages is not a useful distinguishing feature
- The most reliable cytomorphologic feature of parathyroid lesions is the diversity of architectural features
 - Naked nuclei, loose clusters, papillae with fibrovascular cores, and a micro-follicular pattern can be seen in combination
- Nuclear features of parathyroid lesions are subtle
 - Uniform nuclei with stippled chromatin, eccentric nuclei can be seen

Distinguishing Parathyroid from Thyroid on FNA

- Overlapping features and cytopathologic mimics/pitfalls:
 - Intranuclear pseudoinclusions
 - A well-known feature of PTC
 - Can also be seen in parathyroid lesions
 - Papillae
 - Can be seen in both PTC and Parathyroid lesions
 - Micro-follicular pattern
 - Can be seen in both PTC and Parathyroid lesions

Distinguishing Parathyroid from Thyroid on FNA

- Clinicoradiologic Correlation
 - Can be helpful, but has limitations
 - A significant number of patients with parathyroid lesions may have serum PTH levels within normal limits
 - Unusual anatomic location of parathyroids can also lead to diagnostic difficulty
 - Parathyroid glands may be intrathyroidal

Philadelphia Skyline At Night
Photograph by Jon Holiday