Conflicts of Interest/Disclosures

- **Conflicts of Interest:**
 - Sudler & Hennessey

- **Disclosures:**
 - “Investigational” use of medications, drugs, devices including:
 - Misoprostol
 - Foley catheter
Objectives

- To discuss the epidemiology of inductions

- To review various methods of induction of labor
 - Including results from the FOR MOMI trial - four-armed randomized trial on IOL methods

- To become familiarized with an on-line calculator for induction success
4,000,000 million women give birth annually in the U.S.

More than 20% undergo an induction of labor (23.3% in 2012)

One of the most common obstetrical procedures

?? Most effective way to induce labor ??
Background – consequences to an induction

- **Prolonged labor**
 - Increased risk of chorioamnionitis, endometritis, postpartum hemorrhage, and neonatal intensive care unit admission.

- **Cesarean delivery**
 - Increased risk of blood transfusion, venous thromboembolism, and abnormal placentation in a subsequent pregnancy.

- **Increased cost**
 - Increase in hospital costs and healthcare utilization for both a prolonged labor and cesarean delivery.

Importance of decreasing the length of labor and risk of cesarean delivery among women undergoing an induction of labor cannot be overstated.
Background – consequences to an induction

- **Patient satisfaction**

 - Survey study evaluating women’s satisfaction with induced labor (Shetty EJOG 2004)

 - 40% of women – “most important aspect of their induction they would like to change was the length of labor”
Background

- Cervical ripening or “softening of the cervix” - required process of ensuing labor
 - For both spontaneous labor and iatrogenic initiation

- Cervical composition:
 - Fibrous connective tissue, collagen (types 1, III, and IV), elastin, vasculature, fibroblasts
 - Minimal smooth muscle
Cervical ripening

Increase in vascularity and stromal, glandular hypertrophy
Cervical ripening

Inflammatory infiltration & production of cytokines

Metalloproteases are released

Degrade collagen → cervical change

Cervical ripening/ cervical remodeling
Cervical ripening

Extracellular matrix:
↓ proteoglycans
 (strengthen cervix)

↑ glycosaminoglycans
 (soften cervix)

Cervical ripening/
cervical remodeling
Cervical ripening

- Integrity of tissue: ↑ compliance → dilation
- Crosslinks between collagen helices ↓ → stromal breakdown

Cervical ripening/cervical remodeling
Cervical ripening

- Collagen breakdown and rearrangement
- Increase in glycosaminoglycans
- Increase in vascularity and stromal, glandular hypertrophy
- Inflammatory infiltration & production of cytokines

Cervical ripening/cervical remodeling
Cervical ripening

When is it needed?
Bishop scoring system

- Dr. Edward Bishop, 1964
- Pre-labor scoring system to assess likelihood of going into spontaneous labor
 - (NOT for success of induction)
- Currently utilized to assess the favorability of the cervix prior to induction of labor
 - ≤ 6 considered unfavorable \rightarrow consider cervical ripening prior to IOL
 - ≥ 8 \rightarrow probability of vaginal delivery after IOL = spontaneous labor

<table>
<thead>
<tr>
<th>Parameter/Score</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Posterior</td>
<td>Intermediate</td>
<td>Anterior</td>
<td>-</td>
</tr>
<tr>
<td>Consistency</td>
<td>Firm</td>
<td>Intermediate</td>
<td>Soft</td>
<td>-</td>
</tr>
<tr>
<td>Effacement</td>
<td>0-30%</td>
<td>31-50%</td>
<td>51-80%</td>
<td>>80%</td>
</tr>
<tr>
<td>Dilation</td>
<td>0 cm</td>
<td>1-2 cm</td>
<td>3-4 cm</td>
<td>>5 cm</td>
</tr>
<tr>
<td>Fetal Station</td>
<td>-3</td>
<td>-2</td>
<td>-1, 0</td>
<td>+1, +2</td>
</tr>
</tbody>
</table>
Cervical Ripening/Induction of labor methods

- **Mechanical methods**
 - Cervical Foley catheter
 - Stripping membranes
 - Laminaria
 - Extra-amniotic saline infusion

- **Pharmacologic methods**
 - Prostaglandins
 - Prostaglandin E2 (dinoprostone)
 - Synthetic prostaglandin E1 (misoprostol)
 - Oxytocin

- **Combination methods** (mechanical and pharmacologic)
 - Cervical Foley + oxytocin
 - Cervical Foley + prostaglandin
Mechanical methods – Foley catheter

- Enhance stromal breakdown \rightarrow ↑ response to oxy & protaglandin
- 16-18F Foley catheter, 30 mL balloon
- Insert past internal os
- Inflate balloon 30-80cc
 - Caughey et al (Obs Gyn 2010) showed that 60cc has shorter time to delivery vs. 30cc
- +/- Traction
 - Gibson et al (AJOG 2013) no difference in time to delivery with taping vs. traction

Benefits:
- Simple
- Low risk
- Low cost
- Stability of mechanism (ie. No breakdown)
- Widespread availability
Mechanical methods – Foley catheter

❖ Safety:
 • Meta-analysis (McMaster et al. Obs Gyn Sept 2015) on infectious morbidity, 26 studies
 – Compared with prostaglandins alone, no difference in infections:
 ○ Chorioamnionitis, endometritis, pooled maternal infection, neonatal infection

❖ Efficacy:
 • Cochrane review 2012: Mechanical methods for induction of labor

<table>
<thead>
<tr>
<th></th>
<th>Foley vs. PG RR [95% CI]</th>
<th>Foley vs. oxytocin RR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesarean delivery</td>
<td>1.01 [0.90-1.13]</td>
<td>0.57 [0.38-0.88]*</td>
</tr>
<tr>
<td>No vaginal delivery in 24 hours</td>
<td>1.26 [0.94-1.68]</td>
<td>NA</td>
</tr>
<tr>
<td>Tachysystole without FHR changes</td>
<td>0.19 [0.08-0.43]*</td>
<td>0.20 [0.01-4.11]</td>
</tr>
</tbody>
</table>

❖ Serious maternal and neonatal morbidity rare and no difference
Single vs. double balloon

- **Single (Foley) vs. double balloon (Cook)**
 - Salim et al (Obstet Gynecol 2011) – similar efficaciousness (time to delivery and mode of delivery)
 - Pennel et al (BJOG 2009) – shorter time to delivery and less patient discomfort with single balloon vs. double

- **Cost:**
 - Single (Foley) - $3
 - Double (Cook) - $41
Mechanical methods – Stripping membranes

❖ “Freeing” of chorionic membrane from decidua of lower uterine segment → Increase phospholipase A₂ and prostaglandin F₂α

❖ Cochrane review (Boulvain 2005)
 • Cesarean delivery risk no different – RR 0.9 [0.7-1.15]
 • No difference in maternal or neonatal infection
 • Decreased frequency of pregnancy beyond:
 – 41 weeks (RR 0.59 [0.46-0.74])
 – 42 weeks (RR 0.28 [0.15-0.50])
 • Increased risk of uterine contractions without labor and bleeding

❖ NNT=8 to avoid a formal induction
 • Risks/benefits should be individualized

❖ Should not be performed before 39 weeks
Pharmacologic

- **Prostaglandin E2 - Dinoprostone**
- **Only cervical ripening agent approved by FDA**
- **Examples:**
 1. **Cervidil** – control release hydrogel suppository
 - 10mg vaginal insert released slowly 0.3mg/hr
 - Replace q12 hours
 - $218
 - Advantage – can be removed as it does not dissolve
 2. **Prepidil** – intracervical prostaglandin gel
 - Intracervical 0.5 mg/2.5 ml
 - Repeat q 6 hours if needed, max 3 doses in 24 hours
 - $210
 3. **Prostin E2** – vaginal suppository
 - Must be kept refrigerated
 - Work over longer period of time
 - Expensive ($200)
Synthetic prostaglandin (PGE1) - Misoprostol

- **FDA approved for prevention of peptic ulcers**
 - Added off-label use (2002) for cervical ripening and induction of labor → No claims regarding efficacy, safety, dosing

- **Advantages:**
 - Cheap ($0.26 per 25 mcg)
 - Can be kept at room temperature

- **Dosing: 25mcg-50mcg q3-6h**
 - Increased rate of tachysystole with 50mcg
 - Lower doses comparable to conventional methods of ripening/induction (Cochrane 2003 & Hofmeyr 1999)
Efficacy of prostaglandins

<table>
<thead>
<tr>
<th>Study</th>
<th>Agents</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cochrane 2009</td>
<td>PG vs. oxytocin</td>
<td>-Lower cesarean
-Higher vaginal delivery within 24 hrs</td>
</tr>
<tr>
<td>Cochrane 2009</td>
<td>Miso vs. PGE2</td>
<td>-No difference in cesarean
-Higher vaginal delivery within 24 hrs</td>
</tr>
<tr>
<td>Wing, AJOG 1995</td>
<td>Miso vs. PGE2</td>
<td>-Shorter time to delivery (5 hours)
-Less need for oxytocin
-Higher vaginal delivery within 24 hours</td>
</tr>
<tr>
<td>Wing 2006</td>
<td>Miso vs. PGE2+oxytocin</td>
<td>-Less epidural
-More meconium</td>
</tr>
</tbody>
</table>
Oxytocin

- **Peptide hormone**
 - Produced in hypothalamus
 - Stored in posterior pituitary gland → acts on uterus (myometrial smooth muscle)
 - G-protein coupled receptor → inc [Ca$^{+2}$] → contractions
 - No direct effect on cervix

- **Receptors increase with gestation**

- **Uterine response within 3-4 minutes**

- **Steady state achieved within 40 minutes**
Use of combination methods

- Plausibly have synergistic effect in achieving cervical ripening

<table>
<thead>
<tr>
<th>Study</th>
<th>Agents</th>
<th>Time to delivery</th>
<th>Delivery w/in 24hrs</th>
<th>Cesarean delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pettker (Obstet Gynecol 2008)</td>
<td>Foley alone vs. Foley +oxytocin</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>+low dose oxytocin</td>
<td>* multips combined</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>shorter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huin (AJOG 2004)</td>
<td>Foley+oxytocin vs. Foley +EASI</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Hill (AJP 2009)</td>
<td>Oral miso+Foley vs. vag miso</td>
<td>Combined 5hrs faster</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Carbone (Obstet Gynecol 2013)</td>
<td>Vag miso+Foley vs. vag miso</td>
<td>Combined 3hrs faster</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Chung (AJOG 2003)</td>
<td>Vag miso vs. Foley vs. miso+Foley</td>
<td>No</td>
<td>No (vag deliv w/in 24)</td>
<td>No</td>
</tr>
<tr>
<td>Rust (J Repro Med 2001)</td>
<td>Vag miso vs. miso+Foley</td>
<td>No</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Barrilleaux (AJOG 2002)</td>
<td>PGE2+Foley vs. oral miso+Foley vs. oral miso</td>
<td>No</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Cochrane Jozwiak 2012</td>
<td>Foley+any PG vs. PG</td>
<td>---</td>
<td>Yes (vag deliv w/in 24)</td>
<td>No</td>
</tr>
</tbody>
</table>
4 million women give birth annually in the U.S.

More than 20% undergo an induction of labor (23.3% in 2012) → 1 million women

One of the most common obstetrical procedures

?? Most effective way to induce labor ??

Lack of head to head studies of multiple agents, limiting ability to directly compare outcomes and effectiveness within one trial

What method → timely delivery without increasing cesarean and maternal/neonatal risks?
Foley OR MisOprostol for the Management of Induction: the FOR MOMI Trial

Objective:

- To compare the time to delivery among four routinely utilized induction of labor methods, including two different combination methods
 - Hypothesis: Women that undergo an induction with combined methods will have a shorter time to delivery than those with a single method without an increase in cesarean delivery or maternal and neonatal morbidity
Methods
Study Design

- Randomized clinical trial evaluating four methods of induction and comparing time to delivery
 - Misoprostol alone
 - Misoprostol/cervical Foley concurrently
 - Cervical Foley alone
 - Cervical Foley/oxytocin concurrently

- May 2013-June 2015
- Hospital of the University of Pennsylvania
- Approval from convened IRB
- Registered with clinicaltrials.gov (NCT01916681)
Inclusion criteria

- ≥ 37 weeks gestational age
- ≥18 years of age
- Singleton gestation
- Cephalic presentation
- Intact membranes
- Bishop score ≤6 and cervical dilation ≤2cm
- All indications for induction were included unless specified in the exclusion criteria
- Both nulliparous and multiparous
Exclusion criteria

- Contraindication to vaginal delivery
- Contraindication to misoprostol
 - Prior cesarean delivery or contracting >3 times in 10 minutes
- Fetal demise or major fetal anomaly
- Non-English speaking
- HIV
- Women requiring an assisted second stage
- Category 3 fetal heart rate tracing at start of induction
- Hemolysis elevated liver enzymes and low platelets (HELLP) or eclampsia
- IUGR <10th percentile with reversal of flow in the umbilical artery dopplers
- IUGR <5th percentile with any abnormal umbilical artery dopplers (elevated, absent, or reversal of flow)
- If already enrolled in a concurrent prospective observational trial (NuMoM2b)
 - First 12 months only
Recruitment, consenting, randomization

- Eligible patients were approached for study participation in the obstetrical unit (L&D or triage unit) prior to the start of their induction.
 - Written consent was obtained prior to participation in the study.

- Internet based clinical trial management system, Research Electronic Data Capture, (REDCap):
 - Ensured eligibility
 - Assigned randomization group
 - Randomization scheme was 1:1
 - Blocks of 20
 - Stratified by parity
Methods:

- **Misoprostol only arm**
 - 25µg q 3 hours per vagina
 - Repeated up to 5 times for max of 24 hours

- **Cervical Foley only arm**
 - 18F Foley, 30cc balloon inserted digitally or by direct visualization with a speculum
 - Placed just above the level of the internal os
 - Inflated with 60cc of sterile water
 - Taped to the inner thigh
 - Deflated and removed after 12 hours if still in place

- **Misoprostol/Cervical Foley arm**
 - Both misoprostol and cervical Foley placed concurrently using the same procedures as individual groups.

- **Cervical Foley/oxytocin arm**
 - Cervical Foley placed using the same procedure.
 - Oxytocin was initiated concurrently at the start of induction using the oxytocin protocol.
Standard protocols for enrolled patients

- **Oxytocin protocol (hospital based)**
 - 2 mu/min increasing by 2 mu q 15 min
 - 40 mu considered the maximum dose
 - No limit to time at 40 mu

- **Amniotomy**
 - Could be performed at any point during the labor course
 - If not yet ruptured when ≥4 cm dilated, amniotomy recommended

- **Once ≥5cm, proceeded with the active labor protocol**
 - Encouraged close attention to rate of cervical change and recommended
 - Initiation of the oxytocin protocol (if not already initiated) and placement of IUPC if the patient was not making at least 1cm/hr of change.
Other labor interventions/guidelines

- Amnioinfusion, fetal scalp electrode, tocolysis, and assisted second stage were at discretion of the managing provider.

- Cesarean delivery recommendations
 - Failed induction or arrest of active phase was recommended based on current guidelines by Spong & colleagues.
 - If patient was not in active labor after 36 hours of cervical ripening
 - If patient was undelivered 12 hours after achieving active labor

- Cesarean delivery for other indications was at the discretion of the provider
Outcomes

- **Primary outcome: Time to delivery (hours)**
 - Regardless of mode of delivery

- **Secondary outcomes**
 - Cesarean delivery (and indication)
 - Time to vaginal delivery
 - Delivery within 24 hours
 - Time to active labor
 - Maternal and neonatal length of stay
 - Chorioamnionitis
 - NICU admission, NICU admission >48 hours
 - Composite maternal morbidity including ≥1:
 - 3rd/4th degree laceration, blood transfusion, endometritis, wound separation/infection, VTE, hysterectomy, ICU admission, and death.
 - Composite neonatal morbidity including ≥1:
 - Severe RDS, culture proven/presumed sepsis, blood transfusion, HIE, IVH grade 3 or 4, NEC, and need for head cooling.
A data and safety monitoring board (DSMB) was established to independently evaluate the safety of the study.

An interim safety analysis was performed for pre-defined adverse outcomes after 50% recruitment.

The primary outcome, time to delivery, was not evaluated at this interim analysis.

Recommendations: continue with study per current protocol without actions or changes to the study.
Sample size

- 4 hour reduction in time to delivery - clinically meaningful
 - Mean time to delivery for induction in literature: 18 hours ± 8.5
- No “standard of care” method
 - *a priori*, chose to compare all groups
 - Requires 6 separate comparisons (Bonferroni) → alpha of 0.008
- 80% power, 1:1 ratio, and a two sided p-value
- 112 patients in each arm → total sample size of 448
- Increased sample sized based on assumed crossover rate of 10%

- Final desired sample size 492
Data Analysis

- **Descriptive statistics for labor outcomes:**
 - Overall
 - Stratified by parity
- **Bivariate analyses:**
 - ANOVA and Kruskal-Wallis for continuous variables
 - Fisher exact and Chi-square for categorical variables
- **Intention-to-treat principle**
- **Time to event regression models (Cox proportional hazard model)**
 - Labor length censored for cesarean
- **Risk of cesarean delivery**
 - Modified Poisson approach
- **Sensitivity analysis**
 - “As treated”
Results
Flowchart for enrollment

Total number of inductions
N= 2056
Flowchart for enrollment

Total number of inductions
N = 2056

Eligible and approached for study
N = 997

N = 1027 ineligible
N = 32 eligible but not approached

Enrolled in study
N = 495

N = 502 Declined enrollment
Total number of inductions
N = 2056

Eligible and approached for study
N = 997

Enrolled in study
N = 495

Included in final analysis
N = 491

N = 1027 ineligible
N = 32 eligible but not approached

N = 502 Declined enrollment

N = 3 Not randomized due to computer issue
N = 1 Ineligible after randomization (<18 years old)
Total number of inductions
N= 2056

Eligible and approached for study
N= 997

Enrolled in study
N= 495

Included in final analysis
N= 491

Misoprostol only
N= 120

Misoprostol/Cervical Foley
N= 123

Cervical Foley only
N= 123

Cervical Foley/Oxytocin
N= 125

N= 1059 ineligible/not approached

N= 502 Declined enrollment

N=3 Not randomized due to computer issue
N=1 Ineligible after randomization (<18 years old)
Patient demographic and clinical characteristics

<table>
<thead>
<tr>
<th></th>
<th>Miso Only (n=120)</th>
<th>Miso/Foley (n=123)</th>
<th>Foley Only (n=123)</th>
<th>Foley/Oxytocin (n=125)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal Age</td>
<td>26.7 [21.8-31.0]</td>
<td>28.0 [22.4-33.1]</td>
<td>27.3 [22.3-32.9]</td>
<td>26.5 [22.4-31.7]</td>
<td>0.3</td>
</tr>
<tr>
<td>BMI</td>
<td>27.5 [24.3-35.9]</td>
<td>28.3 [23.9-32.6]</td>
<td>29.1 [24.4-35.7]</td>
<td>30.1 [24.6-35.8]</td>
<td>0.3</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>Black</td>
<td>94 (78.3)</td>
<td>93 (75.6)</td>
<td>99 (80.5)</td>
<td>95 (76.0)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>15 (12.5)</td>
<td>24 (19.5)</td>
<td>16 (13.0)</td>
<td>21 (16.8)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>11 (9.2)</td>
<td>6 (4.9)</td>
<td>8 (6.5)</td>
<td>9 (7.2)</td>
<td></td>
</tr>
<tr>
<td>Insurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>Private</td>
<td>40 (33.3)</td>
<td>45 (36.6)</td>
<td>42 (34.2)</td>
<td>38 (30.4)</td>
<td></td>
</tr>
<tr>
<td>Public</td>
<td>80 (66.7)</td>
<td>78 (63.4)</td>
<td>81 (65.9)</td>
<td>87 (69.6)</td>
<td></td>
</tr>
<tr>
<td># prenatal visits</td>
<td>9.5 [7-11]</td>
<td>10 [8-12]</td>
<td>10 [8-12]</td>
<td>10 [7-12]</td>
<td>0.1</td>
</tr>
<tr>
<td>Nulliparous</td>
<td>70 (58.3)</td>
<td>73 (59.4)</td>
<td>73 (59.4)</td>
<td>74 (59.2)</td>
<td>0.9</td>
</tr>
<tr>
<td>GA at induction</td>
<td>39.1 [37.9-40.1]</td>
<td>39.6 [38.3-40.7]</td>
<td>39.3 [38.3-40.4]</td>
<td>39.1 [38.3-40.6]</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Data presented as median [IQR] or n(%)
Patient demographic and clinical characteristics

<table>
<thead>
<tr>
<th></th>
<th>Miso Only (n=120)</th>
<th>Miso/Foley (n=123)</th>
<th>Foley Only (n=123)</th>
<th>Foley/Oxytocin (n=125)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilation at randomization</td>
<td>1 [0.5-1.5]</td>
<td>1 [1-1.5]</td>
<td>1 [0.5-1.5]</td>
<td>1 [0.5-1.5]</td>
<td>0.04</td>
</tr>
<tr>
<td>Dilation at induction</td>
<td>1 [1-1.5]</td>
<td>1.5 [1-2]</td>
<td>1 [1-1.5]</td>
<td>1 [1-1.5]</td>
<td>0.07</td>
</tr>
<tr>
<td>Gestational diabetes</td>
<td>6 (5.0)</td>
<td>8 (6.5)</td>
<td>5 (4.1)</td>
<td>14 (11.2)</td>
<td>0.1</td>
</tr>
<tr>
<td>Pre-gestational DM</td>
<td>3 (2.5)</td>
<td>2 (1.6)</td>
<td>4 (3.3)</td>
<td>2 (1.6)</td>
<td>0.8</td>
</tr>
<tr>
<td>CHTN</td>
<td>7 (5.8)</td>
<td>10 (8.1)</td>
<td>10 (8.1)</td>
<td>12 (9.6)</td>
<td>0.8</td>
</tr>
<tr>
<td>Preeclampsia</td>
<td>35 (29.1)</td>
<td>41 (33.4)</td>
<td>45 (36.6)</td>
<td>43 (34.4)</td>
<td>0.8</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>9 (7.5)</td>
<td>9 (7.3)</td>
<td>10 (8.1)</td>
<td>15 (12.0)</td>
<td>0.5</td>
</tr>
<tr>
<td>Indication for induction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>Postdate</td>
<td>12 (10.0)</td>
<td>20 (16.3)</td>
<td>18 (14.6)</td>
<td>17 (13.6)</td>
<td></td>
</tr>
<tr>
<td>Maternal</td>
<td>28 (23.3)</td>
<td>37 (30.1)</td>
<td>38 (30.9)</td>
<td>44 (35.2)</td>
<td></td>
</tr>
<tr>
<td>Fetal</td>
<td>64 (53.3)</td>
<td>57 (46.3)</td>
<td>54 (43.9)</td>
<td>50 (40.0)</td>
<td></td>
</tr>
<tr>
<td>Elective/Other</td>
<td>16 (13.3)</td>
<td>9 (7.3)</td>
<td>13 (10.6)</td>
<td>14 (11.2)</td>
<td></td>
</tr>
</tbody>
</table>

Data presented as median [IQR] or n(%)
PRIMARY OUTCOME

Time to delivery by study group

<table>
<thead>
<tr>
<th></th>
<th>Miso Only (n=120)</th>
<th>Miso/Foley (n=123)</th>
<th>Foley Only (n=123)</th>
<th>Foley/Oxytocin (n=125)</th>
<th>P-value</th>
</tr>
</thead>
</table>

Data presented as median [IQR], p<0.008 is statistically significant
PRIMARY OUTCOME

Time to delivery by study group: Survival Curve

Estimated time to delivery by study group

- studygrp = 0 Miso alone
- studygrp = 1 Miso + Foley
- studygrp = 2 Foley
- studygrp = 3 Foley + Oxytocin
SECONDARY OUTCOME

Time to vaginal delivery by study group

<table>
<thead>
<tr>
<th></th>
<th>Miso Only (n=120)</th>
<th>Miso/Foley (n=123)</th>
<th>Foley Only (n=123)</th>
<th>Foley/Oxytocin (n=125)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to vaginal delivery (hours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data presented as median [IQR]
SECONDARY OUTCOME

Cesarean delivery by study group

<table>
<thead>
<tr>
<th></th>
<th>Miso Only (n=120)</th>
<th>Miso/Foley (n=123)</th>
<th>Foley Only (n=123)</th>
<th>Foley/Oxytocin (n=125)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD (%) overall</td>
<td>29 (24.2)</td>
<td>34 (27.6)</td>
<td>35 (28.5)</td>
<td>38 (30.4)</td>
<td>0.7</td>
</tr>
<tr>
<td>Nulliparous</td>
<td>23 (32.9)</td>
<td>32 (43.8)</td>
<td>30 (41.1)</td>
<td>30 (40.5)</td>
<td>0.6</td>
</tr>
<tr>
<td>Multiparous</td>
<td>6 (12.0)</td>
<td>2 (4.0)</td>
<td>5 (10.0)</td>
<td>8 (15.7)</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Data presented as n(%)

Penn Medicine
SECONDARY OUTCOME

Delivery within 24 hours

- Miso only: 70.0%
- Miso/Foley: 87.8%
- Foley only: 73.2%
- Foley/Oxytocin: 84.0%

P<0.001
Labor length censoring for cesarean delivery

- **Hazard ratio=event rate (delivery)**
 - HR>1 = event happening faster, HR<1=event happening slower

<table>
<thead>
<tr>
<th></th>
<th>Miso Only</th>
<th>Foley Only</th>
<th>Miso/Foley</th>
<th>Foley/Oxytocin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miso</td>
<td>-----</td>
<td>1.03 [0.76-1.38] (P=0.87)</td>
<td>1.92 [1.42-2.59] (p<0.001)*</td>
<td>1.39 [1.03-1.87] (p=0.03)</td>
</tr>
<tr>
<td>Foley</td>
<td>0.9 [0.72-1.31] (p=0.87)</td>
<td>-----</td>
<td>1.87 [1.39-2.52] (p<0.001)*</td>
<td>1.35 [1.00-1.82] (p=0.047)</td>
</tr>
</tbody>
</table>

- *statistically significant p<0.008
Labor length censoring for cesarean delivery

- **Hazard ratio=event rate (delivery)**
 - HR>1 = event happening faster, HR<1=event happening slower

<table>
<thead>
<tr>
<th></th>
<th>Miso Only</th>
<th>Foley Only</th>
<th>Miso/Foley</th>
<th>Foley/Oxytocin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miso</td>
<td>-----</td>
<td>1.03 [0.76-1.38] (P=0.87)</td>
<td>1.92 [1.42-2.59] (p<0.001)*</td>
<td>1.39 [1.03-1.87] (p=0.03)</td>
</tr>
<tr>
<td>Foley</td>
<td>0.9 [0.72-1.31] (p=0.87)</td>
<td>-------</td>
<td>1.87 [1.39-2.52] (p<0.001)*</td>
<td>1.35 [1.00-1.82] (p=0.047)</td>
</tr>
<tr>
<td>Miso/Foley</td>
<td>0.52 [0.39-0.74] (p<0.001)*</td>
<td>0.53 [0.40-0.72] (p<0.001)*</td>
<td>-------</td>
<td>0.72 [0.54-0.97] (p=0.03)</td>
</tr>
</tbody>
</table>

- *statistically significant p<0.008*
Labor length censoring for cesarean delivery

- **Hazard ratio** = event rate (delivery)
 - HR > 1 = event happening faster, HR < 1 = event happening slower

<table>
<thead>
<tr>
<th></th>
<th>Miso Only</th>
<th>Foley Only</th>
<th>Miso/Foley</th>
<th>Foley/Oxytocin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miso</td>
<td>-----</td>
<td>1.03 [0.76-1.38]</td>
<td>1.92 [1.42-2.59]</td>
<td>1.39 [1.03-1.87]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(P=0.87)</td>
<td>(p<0.001)</td>
<td>(p=0.03)</td>
</tr>
<tr>
<td>Foley</td>
<td>0.9 [0.72-1.31]</td>
<td>-----</td>
<td>1.87 [1.39-2.52]</td>
<td>1.35 [1.00-1.82]</td>
</tr>
<tr>
<td></td>
<td>(p=0.87)</td>
<td></td>
<td>(p<0.001)</td>
<td>(p=0.047)</td>
</tr>
<tr>
<td>Miso/Foley</td>
<td>0.52 [0.39-0.74]</td>
<td>0.53 [0.40-0.72]</td>
<td>-----</td>
<td>0.72 [0.54-0.97]</td>
</tr>
<tr>
<td></td>
<td>(p<0.001)</td>
<td>(p<0.001)</td>
<td></td>
<td>(p=0.03)</td>
</tr>
<tr>
<td>Foley/Oxytocin</td>
<td>0.72 [0.54-0.97]</td>
<td>0.74 [0.55-1.00]</td>
<td>1.38 [1.03-1.87]</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>*(p=0.03)</td>
<td>*(p=0.047)</td>
<td>(p=0.03)</td>
<td></td>
</tr>
</tbody>
</table>

- *Statistically significant p < 0.008*
Secondary maternal outcomes by study group

<table>
<thead>
<tr>
<th>Indication for CD*</th>
<th>Miso Only</th>
<th>Miso/Foley</th>
<th>Foley Only</th>
<th>Foley/Oxytocin</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed IOL</td>
<td>10(34.5)</td>
<td>12(35.3)</td>
<td>16(45.7)</td>
<td>14(36.8)</td>
<td>0.8</td>
</tr>
<tr>
<td>Arrest of Dilation</td>
<td>4(13.8)</td>
<td>9(26.5)</td>
<td>8(22.9)</td>
<td>12(31.6)</td>
<td>0.4</td>
</tr>
<tr>
<td>Arrest of Descent</td>
<td>5(17.2)</td>
<td>5(14.7)</td>
<td>0(0)</td>
<td>4(10.5)</td>
<td>0.05</td>
</tr>
<tr>
<td>NRFHT</td>
<td>15(51.7)</td>
<td>19(55.9)</td>
<td>20(57.1)</td>
<td>16(42.1)</td>
<td>0.6</td>
</tr>
<tr>
<td>Elective/ Other</td>
<td>5(17.2)</td>
<td>2(5.9)</td>
<td>5(14.3)</td>
<td>4(10.5)</td>
<td>0.5</td>
</tr>
<tr>
<td>Regional Anesthesia</td>
<td>111(92.5)</td>
<td>114(92.7)</td>
<td>114(92.7)</td>
<td>121(96.8)</td>
<td>0.4</td>
</tr>
<tr>
<td>Terbutaline used</td>
<td>32(26.7)</td>
<td>19(15.5)</td>
<td>23(18.7)</td>
<td>25(20.0)</td>
<td>0.2</td>
</tr>
<tr>
<td>Oxytocin in active labor</td>
<td>72(68.6)</td>
<td>82(70.7)</td>
<td>98(89.9)</td>
<td>115(98.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Chorioamnionitis</td>
<td>9(7.5)</td>
<td>15(12.2)</td>
<td>17(13.8)</td>
<td>20(16.0)</td>
<td>0.2</td>
</tr>
<tr>
<td>Maternal morbidity</td>
<td>8(6.7)</td>
<td>5(4.1)</td>
<td>13(10.6)</td>
<td>10(8.0)</td>
<td>0.3</td>
</tr>
<tr>
<td>Endometritis</td>
<td>1(0.8)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0.2</td>
</tr>
<tr>
<td>3rd /4th degree laceration</td>
<td>2(2.2)</td>
<td>1(1.1)</td>
<td>6(6.8)</td>
<td>3(3.5)</td>
<td>0.2</td>
</tr>
<tr>
<td>Blood transfusion</td>
<td>2(1.7)</td>
<td>1(0.8)</td>
<td>5(4.1)</td>
<td>4(3.2)</td>
<td>0.4</td>
</tr>
<tr>
<td>Wound separation/infection</td>
<td>1(0.8)</td>
<td>1(0.8)</td>
<td>1(0.8)</td>
<td>3(2.4)</td>
<td>0.7</td>
</tr>
<tr>
<td>Readmission</td>
<td>2(1.7)</td>
<td>2(1.6)</td>
<td>3(2.4)</td>
<td>7(5.6)</td>
<td>0.2</td>
</tr>
<tr>
<td>Total maternal LOS</td>
<td>3[3-4]</td>
<td>3[3-4]</td>
<td>3[3-4]</td>
<td>3[3-4]</td>
<td>0.2</td>
</tr>
</tbody>
</table>

*If reported as the primary or secondary indication, counted in summary. Therefore, % do not sum to 100%

Data presented as median [IQR] or n(%)
Neonatal outcomes by study group

<table>
<thead>
<tr>
<th></th>
<th>Miso Only</th>
<th>Miso/Foley</th>
<th>Foley Only</th>
<th>Foley/Oxytocin</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female sex</td>
<td>61 (50.8)</td>
<td>65 (52.9)</td>
<td>54 (43.9)</td>
<td>60 (48.0)</td>
<td>0.5</td>
</tr>
<tr>
<td>Birth weight</td>
<td>3178</td>
<td>3240</td>
<td>3230</td>
<td>3240</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>[2635-3625]</td>
<td>[2875-3600]</td>
<td>[2855-3575]</td>
<td>[2920-3595]</td>
<td></td>
</tr>
<tr>
<td>Apgar at 1 min</td>
<td>8 [7.5-9]</td>
<td>8 [8-9]</td>
<td>8 [8-9]</td>
<td>8 [8-9]</td>
<td>0.06</td>
</tr>
<tr>
<td>NICU admission</td>
<td>15 (12.5)</td>
<td>10 (8.1)</td>
<td>17 (13.8)</td>
<td>11 (8.8)</td>
<td>0.4</td>
</tr>
<tr>
<td>NICU >48hrs</td>
<td>6 (5.0)</td>
<td>4 (3.3)</td>
<td>5 (4.1)</td>
<td>2 (1.6)</td>
<td>0.5</td>
</tr>
<tr>
<td>Severe RDS</td>
<td>1 (0.8)</td>
<td>0 (0)</td>
<td>2 (1.6)</td>
<td>0 (0)</td>
<td>0.3</td>
</tr>
<tr>
<td>Neonatal sepsis</td>
<td>2 (1.7)</td>
<td>1 (0.8)</td>
<td>1 (0.8)</td>
<td>1 (0.8)</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Data presented as median [IQR] or n(%)
Sensitivity Analyses

- 8.5% of women received different initial induction method (n=31) or had the agent changed during their induction (n=11)

- When analyzed “as treated,” results were unchanged
Conclusions

- First randomized trial comparing four methods of induction in one head to head trial

- Combined methods achieve a faster delivery time than single agent methods overall and stratified by parity
 - Higher chance of delivery within 24 hours

- When censoring for cesarean, Miso/Foley is superior, achieving delivery ~2x faster than single agents

- No difference in cesarean delivery or maternal/neonatal morbidity
Strengths/Limitations

♦ STRENGTHS
♦ Induction/active labor standardized
 • Differences among groups attributed to agents and not labor management
♦ Excluded few indications
 • Increases generalizability
♦ One institution
 • Limits practice variation; ensures compliance with protocols

♦ LIMITATIONS
♦ Patients and providers were not blinded
 • Not practical since examinations required
 • Labor protocols helped minimize variations in practice by un-blinded providers
Clinical Impact

- **One of the most common obstetrical procedures (23.2% in 2012)**
 - If ~1,000,000 women undergo induction with combined methods → 3.5 million fewer hours spent in labor → large impact on healthcare utilization and delivery

- **Shortening labor without increasing cesarean or maternal/neonatal complications → clinical and financial implications**
 - Known maternal and neonatal risks associated with prolonged labor and cesarean delivery as well as the associated costs
Acknowledgements

- Sindhu Srinivas
- Michal Elovitz
- Sam Parry
- Katheryne Downes
- Mary Sammel
- Deborah Driscoll

- The patients who enrolled in the study
- The providers and nurses who helped with patient recruitment and adherence to protocols
- Research coordinators

Funded/support by:

- Women’s Reproductive Health Research Career Development Program: K12-HD001265-14
- Maternal and Child Health Research Center (MCHRC) at the University of Pennsylvania
References

References

- Kelly, AJ. Castor oil, bath and/or enema for cervical priming and induction of labour (Review) Cochrane Reviews 2009.